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 A B S T R A C T

We showcase the utility of the Lagrangian descriptors method in qualitatively understand-
ing the underlying dynamical behavior of dynamical systems governed by fractional-order 
differential equations. In particular, we use the Lagrangian descriptors method to study the 
phase space structure of the unforced and undamped Duffing oscillator when fractional-order 
differential equations govern its time evolution. Our study considers the Riemann–Liouville 
and the Caputo fractional derivatives. We use the Grünwald–Letnikov derivative, which is 
an operator represented by an infinite series, truncated suitably to a finite sum as a finite 
difference approximation of the Riemann–Liouville operator, along with a correction term 
that approximates the Caputo fractional derivative. While there is no issue with forward-time 
integrations needed for the evaluation of Lagrangian descriptors, we discuss in detail ways to 
perform the non-trivial task of backward-time integrations and implement two methods for 
this purpose: a ‘nonlocal implicit inverse’ technique and a ‘time-reverse inverse’ approach. We 
analyze the differences in the Lagrangian descriptors results due to the two backward-time 
integration approaches, discuss the physical significance of these differences, and eventually 
argue that the ‘nonlocal implicit inverse’ implementation of the Grünwald–Letnikov fractional 
derivative manages to reveal the phase space structure of fractional-order dynamical systems 
correctly.

. Introduction

Fractional calculus, a generalization of classical calculus, extends the concept of derivatives and integrals to non-integer (or 
ractional) orders. While conventional calculus, attributed to Newton and Leibniz, is well-suited for dealing with integer-order 
ifferentials, fractional calculus traces its origins back to Leibniz, who first introduced the concept in a letter to Guillaume de 
’Hôpital in 1695, pondering the possibility of a half-order derivative [1]. Unlike classical derivatives, which depend solely on local 
roperties, fractional derivatives account for the history of the function, making them well-suited to model complex systems with 
emory and hereditary properties, see, e.g., [2–4].
Over the years, fractional derivatives have been successfully used in studies of various physical systems. As examples, we mention 
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the application of fractional derivatives in modeling the viscoelastic behavior of materials, for which traditional integer-order models 
often fail to capture their time-dependent behavior accurately [5–7]. Fractional derivative models have also been applied to describe 
the stress–strain relationship in polymers and elastomers, commonly used in various engineering applications, such as vibration 
dampers and seismic energy dissipation devices. This approach allows for a more accurate representation of the material’s response 
under different loading conditions, including creep, relaxation, and cyclic loading tests [6,8]. Furthermore, a lot of theoretical work 
has been done on the development of efficient numerical schemes for constructing and computing fractional derivatives and integrals, 
see, e.g., [9–19]. The dynamics of waves in models with fractional derivatives have also been studied in, e.g., the sine-Gordon 
equation [20–22].

Despite the increase in utility, providing a physical or geometrical interpretation of fractional integration and differentiation has 
proven quite tricky. This lack of a suitable interpretation has been discussed in various conferences and meetings, some of which 
have been mentioned, e.g., in [23]. Since those early conferences, multiple attempts have offered different explanations of fractional 
calculus. For example, numerous articles have tried to link fractional calculus and fractal geometry (see, e.g., [24–26]). Additional 
examples of explanatory attempts include providing an interpretation of a fractional order Grünwald–Letnikov differintegral by 
measuring the path and acceleration of a point in motion [27], or by first offering a straightforward geometric elucidation of 
fractional integrals, which is then used to introduce a physical understanding of the Riemann–Liouville fractional integration 
with respect to a dynamic time scale [23]. Quoting Podlubny (2001), ‘‘. . . it is difficult to speak about an acceptable geometric 
interpretation if one cannot see any picture there’’ [23]. In this work, we offer an approach of qualitatively visualizing phase space 
structures of dynamical systems governed by fractional differential equations through implementing the Lagrangian descriptors 
method [28]. Our work is, therefore, expected to pave the way toward providing a physical and geometrical interpretation of 
fractional derivatives.

The Lagrangian descriptors method is a tool that helps to identify phase space structures of systems governed by integer-order 
differential equations, including invariant manifolds [29]. These descriptors are scalar functions obtained by the time integration of a 
positive quantity, such as the modulus of velocity or acceleration, along particle trajectories over a finite time interval. By evaluating 
these quantities through the evolution of trajectories, both forward and backward in time, one can provide a comprehensive picture 
of the underlying dynamics in a computationally efficient way compared to traditional methods, like the computation of finite-time 
Lyapunov exponents [30]. The method of Lagrangian descriptors was first introduced in [31] and was initially inspired by efforts 
to explain the geometric patterns that control transport in geophysical flows. Since then, Lagrangian descriptors have found various 
applications in fields such as chemical reaction dynamics [28,32–37], geophysical flows [31,38–42], cardiovascular flows [43], 
biomedical flows [44], and billiard dynamics [45], to name a few. In addition, Lagrangian descriptors have also been used as 
diagnostics of chaotic behavior [29,46–48]. As a more general remark, we note that approaches based on the Lagrangian description 
of dynamical systems have been used to study phase space structures in diverse research fields ranging from plasma physics to 
oceanic flows [49–53].

In this paper, we apply the method of Lagrangian descriptors for the first time to systems governed by fractional-order 
differential equations to obtain their phase portraits, which would not be possible using traditional methods due to the nonlocal 
character of fractional-order differential equations. It is worth mentioning that this nonlocality creates difficulties in calculating the 
backward-in-time part of the Lagrangian descriptors, a topic that we also address in this work.

The paper is organized as follows. In Section 2, we present the definitions of the various fractional time derivatives used in 
this paper, while in Section 3, we present the Lagrangian descriptors method. Then, in Section 4, we use Lagrangian descriptors 
computations to visualize the phase space structure of the Duffing oscillator when its dynamics are described by fractional-order 
differential equations and present different approaches of performing backward time integrations. In addition, we discuss in detail 
which of these approaches manage to reveal the phase space structure of the system correctly. In Section 5, we present our 
conclusions and discuss potential future work directions.

2. Fractional derivatives

Unlike classical integer-order derivatives, fractional derivatives offer a more flexible framework that arises from how fractional 
calculus can be generalized from its classical counterpart. The concept of fractional differentiation is, therefore, not unique, and 
over the years, numerous definitions of fractional derivatives have been proposed [54]. The most well-known definitions include 
the Riemann–Liouville fractional derivative, the Caputo derivative, and the Grünwald–Letnikov derivative. Each of these definitions 
is based on distinct mathematical principles, yet they aim to extend the concept of differentiation to non-integer orders, e.g., [55].

The Riemann–Liouville fractional derivative is among the oldest and most widely used definitions. It is based on an integral 
operator and offers a natural extension of integer-order differentiation. Let 𝐶𝑛(𝐼,R) denote the space of 𝑛-times continuously 
differentiable single variable real-valued functions on the real interval 𝐼 . We also let 𝛼 ∈ (0,∞)⧵N and the function 𝑔 ∈ 𝐶𝑛([𝑎, 𝑏],R). 
The (left-sided) Riemann–Liouville fractional-order derivative of order 𝛼 of the function 𝑔 at point 𝑡 is given by 

𝑅𝐿𝐷𝛼
𝑎+𝑔(𝑡) =

1
𝛤 (𝑛 − 𝛼)

𝑑𝑛

𝑑𝑡𝑛 ∫

𝑡

𝑎
(𝑡 − 𝑠)𝑛−𝛼−1𝑔(𝑠)𝑑𝑠, (1)

where 𝑛 = ⌊𝛼⌋+1 and 𝛤 (𝑥) is the usual Gamma function. This fractional derivative can be defined for absolutely continuous functions 
of order 𝑛, i.e., 𝑔 ∈ 𝐴𝐶𝑛([𝑎, 𝑏],R), which does not necessarily require the existence of the 𝑛-th derivative of the function. This is 
highlighted in Lemma 2.2 on page 73 of [2]. This less strict requirement is sufficient, particularly since our analysis is restricted to 
the case 0 < 𝛼 < 1. However, the assumption of 𝐶𝑛 smoothness is commonly made for simplicity.
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The definition of fractional derivatives (1) presents challenges in practical applications for the following reasons. In initial value 
problems with classical (integer-order) differential equations, initial conditions typically specify the function’s values and integer-
order derivatives at a given point. However, initial value problems with non-integer order Riemann–Liouville derivatives often 
require initial conditions involving integrals or fractional integrals of the function [2,56,57]. As a result, standard initial conditions 
(i.e., specifying the value of the function at a single point) may not be sufficient, and one might need to specify additional conditions 
based on past behavior. This requirement adds complexity to solving fractional initial value problems with the Riemann–Liouville 
definition. In that scenario, interpreting and applying this type of fractional derivatives in real-world scenarios where initial values 
are typically simple, such as initial positions or velocities in mechanical systems, becomes challenging.

Caputo modified the classical Riemann–Liouville fractional derivative to address the practical issues related to the initial 
conditions. The primary motivation behind Caputo’s formulation was to make fractional derivatives more suitable for modeling 
physical processes, i.e., initial value problems, particularly in applications where classical initial conditions (such as those used in 
integer-order differential equations) are commonly used. The (left-sided) Caputo fractional-order derivative of order 𝛼 of a function 
𝑔 is given by 

𝐶𝐷𝛼
𝑎+𝑔(𝑡) =

1
𝛤 (𝑛 − 𝛼) ∫

𝑡

𝑎
(𝑡 − 𝑠)𝑛−𝛼−1

𝑑𝑛𝑔(𝑠)
𝑑𝑠𝑛

𝑑𝑠. (2)

The Caputo derivative can be written in terms of the Riemann–Liouville derivative as follows 

𝑅𝐿𝐷𝛼𝑔(𝑡) = 𝐶𝐷𝛼𝑔(𝑡) +
𝑛−1
∑

𝑘=0

𝑔(𝑘)(0+)
𝛤 (𝑘 − 𝛼 + 1)

𝑡𝑘−𝛼 . (3)

These two fractional derivatives coincide when the initial conditions are zero (homogeneous), i.e., 𝑔(𝑘)(0+) = 0, 𝑘 = 0,… , 𝑛 − 1, see 
e.g., [58]. While the Caputo derivative is often preferred in modeling physical systems, the Riemann–Liouville derivative is favored 
for its historical significance and analytical tractability.

Grünwald and Letnikov generalized the notion of finite differences to non-integer orders. They worked on extending the concept 
of differentiation and integration to fractional orders using finite differences, naturally leading to a discretized form of fractional 
derivatives. The Grünwald–Letnikov fractional derivative of order 𝛼 of function 𝑔 is given by 

𝐺𝐿𝐷𝛼
𝑎+𝑔(𝑡) = lim

ℎ→0
ℎ−𝛼

[

(𝑡−𝑎)∕ℎ
]

∑

𝑟=0
(−1)𝑟

(

𝛼
𝑟

)

𝑔(𝑡 − 𝑟ℎ), (4)

where the generalized binomial coefficient is
(

𝛼
𝑘

)

=
𝛼(𝛼 − 1)(𝛼 − 2)… (𝛼 − 𝑘 + 1)

𝑘!
=

𝛤 (𝛼 + 1)
𝛤 (𝑘 + 1)𝛤 (𝛼 − 𝑘 + 1)

.

It is important to note that if 𝛼 ∈ (0,∞) ⧵ N and 𝑔 ∶ (0,∞) → R is a function of class 𝐶𝑛, then [2,56] 
𝑅𝐿𝐷𝛼𝑔(𝑡) = 𝐺𝐿𝐷𝛼𝑔(𝑡). (5)

The Grünwald–Letnikov derivative (4), therefore, provides a framework for the numerical computation of the Riemann–Liouville 
fractional derivative. However, since the Riemann–Liouville derivative was formally introduced slightly later, Grünwald and 
Letnikov did not set their work explicitly as its discretization. Using (3), we can also obtain the Grünwald–Letnikov representa-
tion for the Caputo derivative [58]. We consider the Riemann–Liouville and Caputo derivatives using their Grünwald–Letnikov 
representations in this work.

3. Lagrangian descriptors

The Lagrangian descriptors method involves summing, for any initial condition of a dynamical system, the values of a positive 
scalar function that depends on phase space variables along its trajectory, both forward and backward in time. This process is applied 
to a grid of initial conditions on a specific phase space slice to uncover the underlying dynamical structure. Furthermore, in the 
case of dynamical systems described by integer-order differential equations or of discrete-time systems, the resulting scalar field of 
Lagrangian descriptors highlights invariant stable and unstable manifolds, which appear as ‘singular features’ where the descriptor 
values change abruptly. Forward trajectory integration identifies stable manifolds, while backward trajectory evolution identifies 
unstable manifolds. In this paper, we use the following pseudonorm-like scalar functional as the Lagrangian descriptor [59] 

𝑀𝑝(𝐱0, 𝑡0, 𝜏) = 𝑀𝑏
𝑝 (𝐱0, 𝑡0, 𝜏) +𝑀𝑓

𝑝 (𝐱0, 𝑡0, 𝜏), (6)

where 

𝑀𝑏
𝑝 (𝐱0, 𝑡0, 𝜏) = ∫

𝑡0

𝑡0−𝜏

𝑁
∑

𝑖=1

|

|

|

𝑓𝑖(𝐱, 𝑡)
|

|

|

𝑝
𝑑𝑡, 𝑀𝑓

𝑝 (𝐱0, 𝑡0, 𝜏) = ∫

𝑡0+𝜏

𝑡0

𝑁
∑

𝑖=1

|

|

|

𝑓𝑖(𝐱, 𝑡)
|

|

|

𝑝
𝑑𝑡, (7)

with 𝑓𝑖(𝐱, 𝑡) being the 𝑖th component of a vector field, while 𝑡0 is the time at which we start the evolution of the studied trajectory 
(in this study we set 𝑡0 = 0), 𝜏 is the integration time, and 𝐱0 is the initial condition of the considered orbit. The superscripts 𝑓
and 𝑏 indicate the forward- and backward-in-time Lagrangian descriptors method. The functional (6) resembles a 𝑝-norm, but with 
3 
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𝑝 ∈ R. We select the parameter 𝑝 to allow for the greatest discontinuity of the gradient of the Lagrangian descriptor values at the 
manifold, thus permitting us to extract the normally hyperbolic invariant manifolds (NHIMs) [60] from the Lagrangian descriptors 
scalar field. It has been shown that this occurs at 𝑝 = 1∕2 for a wide variety of dynamical systems [61,62].

The formulation (6) has been used for dynamical systems governed by ordinary differential equations. Our model is governed 
by fractional-order differential equations that we solve as a discrete-time dynamical system. For this reason, we define the discrete 
Lagrangian descriptors in the following pseudonorm form (see, e.g., [29,35,63]) 

𝑀𝐷𝑝(𝐱𝟎, 𝑁) = 𝑀𝐷−
𝑝 (𝐱𝟎, 𝑁) +𝑀𝐷+

𝑝 (𝐱𝟎, 𝑁), (8)

where 

𝑀𝐷−
𝑝 (𝐱𝟎, 𝑁) = ℎ1−𝑝

−1
∑

𝑗=−𝑁

𝑘
∑

𝑖=1
|𝑥𝑖𝑗+1 − 𝑥𝑖𝑗 |

𝑝, 𝑀𝐷+
𝑝 (𝐱𝟎, 𝑁) = ℎ1−𝑝

𝑁−1
∑

𝑗=0

𝑘
∑

𝑖=1
|𝑥𝑖𝑗+1 − 𝑥𝑖𝑗 |

𝑝 (9)

respectively are the backward and forward evolution of the orbit with initial condition 𝐱𝟎. Furthermore, 𝑥𝑖𝑗 represents the 𝑖th
component of the state vector 𝐱 at time 𝑡𝑗 and ℎ = (𝑡𝑗+1 − 𝑡𝑗 ) ≪ 1 is the discretization time step.

4. Numerical results

To illustrate the application of the Lagrangian descriptors method for revealing the phase portrait of dynamical systems with frac-
tional derivatives, we consider the unforced and undamped Duffing oscillator governed by fractional-order differential equations: 

𝐷𝛼𝑥(𝑡) = 𝑦(𝑡),

𝐷𝛼𝑦(𝑡) = 𝑥(𝑡) − 𝑥(𝑡)3,
(10)

where 𝐷𝛼 denotes the fractional derivative of order 𝛼. When 𝛼 = 1, system (10) reduces to the classical Duffing oscillator originally 
described in [64]. For non-integer values of 𝛼, the system represents a fractional Duffing oscillator in which the concept of 
acceleration is generalized, where the system’s present state depends not only on current values but also on its entire past trajectory. 
This reflects the memory effect inherent to fractional calculus.

The fractional derivative can be viewed as a continuous interpolation between integer-order derivatives. For instance, considering 
an alternative fractional-order Duffing oscillator as 𝐷2𝛼𝑥(𝑡) = 𝑥(𝑡) − 𝑥(𝑡)3 with 0.5 < 𝛼 < 1, the derivative lies between the first 
derivative (velocity) and the second derivative (acceleration), thereby capturing intermediate dynamical behavior. Variants of the 
Duffing oscillator incorporating damping and external forcing in the fractional-order setting have been studied in, e.g., [65–67], with 
a focus on chaotic dynamics, bifurcation structures, and the emergence of multistability induced by fractional effects. An alternative 
approach to introducing fractionality is through the damping term rather than the acceleration, allowing for the modeling of complex 
energy dissipation mechanisms. This has been explored in works such as [68–73], where the memory-dependent dissipation leads 
to rich dynamics, including slow energy decay and long-term memory effects.

In this study, however, our objective is to demonstrate the effectiveness of the Lagrangian descriptors method in analyzing 
dynamical systems with fractional derivatives. To this end, we focus on the simplest form of the fractional Duffing oscillator (10), 
omitting damping and external forcing to isolate and examine the impact of fractionality alone. Note that the fractional equations, 
for all the different fractional derivatives used, exhibit invariance under the transformation 𝑥 → −𝑥 and 𝑦 → −𝑦. This symmetry, 
referred to as ‘‘point symmetry’’, implies that the solutions of the system are symmetric with respect to the origin. Consequently, 
we expect the phase space structures and results presented in this work will display this symmetry. Its presence in our results will 
confirm that the numerical simulations are consistent and reasonable.

4.1. Phase space structures

The Lagrangian descriptors method has been successfully applied to the classical Duffing oscillator (10) with 𝛼 = 1 [28], as well 
as to variants such as stochastic Duffing systems [74]. This method yields a scalar field highlighting key geometric structures in 
the phase space, including saddle points, attractors, repellers, and NHIMs. By integrating trajectories over a finite time interval, 
the Lagrangian descriptors method enables efficient visualization of these structures without requiring long-time simulations. To 
perform backward-in-time integration for dynamical systems described by integer-order derivatives, we can reverse the direction of 
the time variable and integrate the dynamical system by using the same numerical methods but with negative time steps.

In Fig.  1, we present results for the classical Duffing oscillator using the pseudonorm definition of Lagrangian descriptors (6). 
The computations were performed over a grid of 1000 × 1000 equidistant initial conditions in the domain 𝑥 ∈ [−1.5, 1.5] and 
𝑦 ∈ [−1, 1], for integration times 𝜏 = 5 [Fig.  1(a)] and 𝜏 = 10 [Fig.  1(b)]. The color bars indicate the magnitude of the Lagrangian 
descriptor values in each panel. From these results, three fixed points are identifiable: two stable equilibria at (𝑥, 𝑦) = (±1, 0), and 
one unstable saddle at the origin (𝑥, 𝑦) = (0, 0). By using linearization, one finds that the equilibria at (𝑥, 𝑦) = (±1, 0) have purely 
imaginary eigenvalues 𝜆 = ±

√

2𝑖, indicating centers in the linearized system. In contrast, the origin has real eigenvalues 𝜆 = ±1, 
characterizing it as a saddle point. The stable and unstable manifolds of the origin connect to form an ‘‘infinity-shaped’’ separatrix 
structure. Additionally, low Lagrangian descriptor values are observed near the stable equilibria, corresponding to regions of slower 
dynamical variation. Normally hyperbolic invariant manifolds appear as sharply defined curves in the Lagrangian descriptor scalar 
field, characterized by strong gradient transitions in the descriptor values [34]. Their nearly identical appearance across both panels 
4 
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Fig. 1. Initial conditions colored according to their Lagrangian descriptor value (6), by using the color bar above each panel of the classical Duffing oscillator, 
i.e., system (10) for 𝛼 = 1. The two panels are constructed for a grid of 1000 × 1000 equidistant initial conditions over the intervals 𝑥 ∈ [−1.5, 1.5] and 𝑦 ∈ [−1, 1]
and show results for an integration time of (a) 𝜏 = 5 and (b) 𝜏 = 10.

in Fig.  1 reflects their invariant nature, as discussed in [60]. As expected, the overall magnitude of the Lagrangian descriptor values 
increases with the integration time, from 𝜏 = 5 to 𝜏 = 10, due to the cumulative nature of the computation.

Since the dependence of the model on the fractional order 𝛼 is continuous, the behavior of the system governed by fractional-
order derivatives smoothly converges to that of its integer-order counterpart as 𝛼 approaches an integer. In particular, the fractional 
derivative operator and the corresponding solutions tend to their classical analogs. Consequently, the phase space structures of 
the fractional model converge to those of the integer-order system. The results in Fig.  1, corresponding to the integer-order case 
𝛼 = 1, will therefore serve as a reference for analyzing how the phase space structures evolve under fractional-order dynamics with 
0 < 𝛼 < 1.

In the context of fractional-order dynamical systems with derivative orders 𝛼 ≤ 1, the definition of phase space requires clarifica-
tion. Unlike integer-order systems, where the phase space dimension corresponds directly to the number of initial conditions needed 
to uniquely specify a solution, fractional-order dynamical systems exhibit memory effects that complicate this correspondence. 
Nevertheless, since our analysis is restricted to the initial value problem with fixed starting time 𝑡 = 0 and fractional derivatives 
of order 𝛼 ≤ 1, the solutions depend uniquely on the finite set of initial values 𝑥(0) and 𝑦(0). Therefore, we define an effective 
two-dimensional phase space, reflecting the minimal data required to initiate a solution at 𝑡 = 0 uniquely. We note, however, that 
if the problem were to be re-initialized at a later time 𝑡0 > 0 with a fixed lower limit of integration at 0 [see Eqs. (1) and (2) with 
𝑎 = 0], an infinite history would be required.

The challenge in calculating Lagrangian descriptors for fractional derivatives lies in the backward integration of the equations 
of motion (10), as required by the method [see Eq. (7)]. This inverse time integration involves solving the differential equations by 
stepping backward along the time axis, effectively reversing the system’s time evolution. While this approach is useful in applications 
such as reconstructing past states from current data or performing sensitivity analysis, it introduces numerical stability challenges. 
Specifically, many physical systems governed by dissipative processes are inherently irreversible, meaning small numerical errors 
during backward integration can accumulate exponentially, leading to inaccurate or non-physical solutions. In this work, we consider 
two approaches for solving the backward-in-time integration.

The first approach follows the integer-order system, where we apply the transformation 𝑡 → −𝑡. In this case, the backward 
dynamics of the Duffing oscillator are derived from (10) as follows: 

𝐷𝛼𝑥(𝑡) = −𝑦(𝑡),

𝐷𝛼𝑦(𝑡) = −𝑥(𝑡) + 𝑥(𝑡)3,
(11)

which can be evolved using the same one-step method applied to (10) (e.g., the Grünwald–Letnikov or Caputo derivative). We refer 
to this method as the ‘time-reversing inverse’ approach. However, in the case of fractional-order derivatives, Eq. (11) no longer 
provides the correct backward trajectory of the system [75]. This is due to the intrinsic memory property of fractional derivatives, 
where the evolution of the system depends not only on its current state but also on its entire history. We therefore consider the 
following second approach, which is more complex, as reconstructing past states requires knowledge of the entire trajectory rather 
than just a finite set of current values.

To determine the initial state 𝐱 = 𝐱𝟎 at time 𝑡 = 0 from a given future state 𝐱𝐍 at 𝑡 = 𝑡𝑁 , we must solve equations that depend 
on all unknown past values of the state vector 𝐱 between 𝑡 = 0 and 𝑡 = 𝑡 . Therefore, the backward time integration method 
𝑁

5 
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becomes implicit for the Grünwald–Letnikov derivative (4). In this case, we must simultaneously solve a set of algebraic nonlinear 
equations for all time steps, which we do using the Newton–Raphson method. We call this approach the ‘nonlocal implicit inverse’ 
method. However, when implementing this method, we found that numerical convergence was not always achieved for certain initial 
conditions. This issue became more pronounced when using the Caputo version of the fractional derivative (2) with the ‘nonlocal 
implicit inverse’ method. For the sake of comparison, we therefore use (11) for the Caputo derivatives with fractional 𝛼.

We now apply the Lagrangian descriptors method (6) to analyze the phase space structures of the Duffing oscillator governed by 
fractional-order differential Eqs. (10). The results are presented in Fig.  2, for various integration times 𝜏 and fractional orders 𝛼. To 
facilitate direct comparison with the results obtained for 𝛼 = 1 (Fig.  1), all panels in Fig.  2 were generated using a grid of 100 × 100 
equidistant initial conditions over the same interval considered in Fig.  1. We emphasize that a sparser grid was used instead of the 
1000 × 1000 grid points employed in Fig.  1 due to the significantly higher computational costs associated with integrating fractional 
differential equations.

The results obtained using the ‘nonlocal implicit inverse’ method with the Grünwald–Letnikov fractional derivative are presented 
in the first column of Fig.  2 for an integration time of 𝜏 = 5. The remaining panels in the second and third columns of Fig.  2 display 
the Lagrangian descriptor values computed using the ‘time-reversing inverse’ method with the Caputo derivative. The results in the 
second and third columns correspond to an integration time of 𝜏 = 5 and 𝜏 = 10, respectively. Note that the ‘nonlocal implicit 
inverse’ method was only applied in the first column for an integration time of 𝜏 = 5, as this approach requires significantly higher 
computational resources than the ‘time-reversing inverse’ method used in the second and third columns.

Each row of plots in Fig.  2 illustrates the phase space structures of the Duffing oscillator described by (10) for different fractional 
orders 𝛼. We observe similar infinity-shaped phase space structures in all panels of the top row. This similarity suggests that for 
𝛼 = 0.9999 – a value very close to the integer-order case (𝛼 = 1) – the formations revealed by the Lagrangian descriptors method 
are approximately invariant to both the chosen integration time 𝜏 and the fractional derivative method employed. Furthermore, 
the nearly identical shapes of the phase space patterns in Fig.  2(a)–(c) closely resemble those observed in Fig.  1. We also note that 
the ranges of Lagrangian descriptor values (indicated by the color bars above each panel in Fig.  2) are approximately equivalent to 
those seen in the corresponding panels of Fig.  1 for the same integration time 𝜏.

Reducing the fractional order of the dynamical system slightly to 𝛼 = 0.99 for the ‘nonlocal implicit inverse’ method [Fig.  2(d)] 
results in an infinity-shaped structure that is no longer continuous and connected. Instead, the structure exhibits breaks at both 
edges of the 𝑥-axis. Notably, the phase portrait in Fig.  2(d) exhibits point symmetry about the origin. In the plots obtained using 
the ‘time-reversing inverse’ method [Fig.  2(e), (f)], the structures revealed by the Lagrangian descriptors method demonstrate a 
clear dependence on the integration time 𝜏. For 𝜏 = 5 [Fig.  2(e)], the phase space formations closely resemble those observed for 
𝛼 = 0.9999 with the same integration time [Fig.  2(b)]. Increasing the integration time to 𝜏 = 10 [Fig.  2(f)] reveals an additional 
curve outside the infinity-shaped feature. It is worth noting that the structures generated by the ‘time-reversing inverse’ approach 
in Fig.  2(e), (f) exhibit reflective symmetry with respect to the horizontal and vertical axes passing through the origin (𝑥, 𝑦) = (0, 0). 
Further decreasing the fractional derivative order to 𝛼 = 0.98 leads to an infinity-like structure with more pronounced breaks when 
the ‘nonlocal implicit inverse’ approach is used [Fig.  2(g)]. In the results obtained using the ‘time-reversing inverse’ methods [Fig. 
2(h), (i)], we observe geometric patterns similar to those presented in Fig.  2(e), (f) for 𝛼 = 0.99. However, for 𝜏 = 10 [Fig.  2(i)], the 
distances between the additional curves increase compared to those observed in Fig.  2(f).

From the results presented in Fig.  2, we observe that for 𝛼 ≈ 1, the phase space structures closely resemble those of the integer-
order (𝛼 = 1) Duffing oscillator analyzed in Fig.  1. These structures are practically unaffected by the specific realization of the 
fractional derivatives or the integration time 𝜏. However, as the fractional order of the dynamical system is slightly reduced (while 
remaining close to 𝛼 = 1), the phase space geometries revealed by the Lagrangian descriptors exhibit dependence on both the 
integration time 𝜏 and the particular methods used to evaluate the backward-in-time fractional derivatives. To illustrate how the 
phase space features evolve as the fractional order 𝛼 is further decreased, we present in Fig.  3 phase space plots analogous to those 
in Fig.  2, but for 𝛼 = 0.95 [Fig.  3(a)–(d)] and 𝛼 = 0.9 [Fig.  3(e)–(h)].

Fig.  3(a) and (d) present results obtained using the ‘nonlocal implicit inverse’ method. Several points in these plots are colored 
white, indicating initial conditions for which the backward-in-time evolution could not be computed due to the non-convergence 
of the implemented root-finding method. Additionally, as the fractional order of the system decreases from 𝛼 = 0.95 [Fig.  3(a)] 
to 𝛼 = 0.9 [Fig.  3(d)], we observe an increase in the number of these white points. This trend suggests that the ‘nonlocal implicit 
inverse’ method is approaching the limits of its applicability and cannot be efficiently used for smaller 𝛼 values. In contrast, the 
‘time-reversing inverse’ approach, used to generate the results in the right two columns of Fig.  3, remains applicable even for 
smaller 𝛼 values. The phase space patterns in Fig.  3(a) and (d) show a substantial break of the branches that previously formed the 
well-defined infinity-shaped structure. This disconnection becomes more pronounced as 𝛼 decreases, leading to phase space patterns 
that differ significantly from those observed in the integer-order case presented in Fig.  1. Despite these changes, the point symmetry 
of the structures – previously observed in Fig.  2(a), (d), and (g) – is still preserved.

The results obtained using the Caputo derivative with the ‘time-reversing inverse’ approach are presented in Fig.  3(b), (c) for 
𝛼 = 0.95 and in Fig.  3(e), (f) for 𝛼 = 0.9. We note that the phase portraits in all these figures retain reflective symmetry with respect 
to the horizontal and vertical axes passing through the origin, consistent with the observations in the right two columns of Fig.  2. 
For both 𝛼 = 0.95 and 𝛼 = 0.9, the infinity-shaped structure remains well-defined for 𝜏 = 5 [Fig.  3(b) and (e)]. For 𝜏 = 10 and 
𝛼 = 0.95 [Fig.  3(c)], an additional curve appears outside the infinity-shaped formation, similar to the patterns observed in Fig.  2(f) 
and (i). However, the distance between these two structures is larger than those observed in Fig.  2(f) and (i). As the integration 
time increases [from Fig.  3(e) to Fig.  3(f)], the color of the curves becomes darker, indicating changes in the Lagrangian descriptor 
values.
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Fig. 2. The phase space of the Duffing oscillator governed by the fractional differential Eqs. (10) is presented for various fractional orders 𝛼 (indicated on the 
left of each row) and integration times 𝜏 (indicated at the top of each column). Each initial condition is colored according to its Lagrangian descriptor value, as 
shown by the color bar above each panel. The plots are generated using a grid of 100 × 100 equidistant initial conditions over the intervals 𝑥 ∈ [−1.5, 1.5] and 
𝑦 ∈ [−1, 1]. The first column of results [panels (a), (d), and (g)] reveals the phase space structure obtained using the Grünwald–Letnikov method (4), following 
the ‘nonlocal implicit inverse’ approach (see the main text for details). The remaining panels in the second and third columns correspond to results obtained 
using the Caputo derivative with the ‘time-reversing inverse’ method.

Using the ‘time-reversing inverse’ method, the Lagrangian descriptors can still be computed for smaller 𝛼 values. However, as 
previously noted, this is not feasible with the ‘nonlocal implicit inverse’ approach, which has reached its practical limits for smaller 
𝛼 values.

4.2. Which method reveals the correct dynamical behavior?

Having computed the Lagrangian descriptors of the Duffing oscillator governed by fractional differential equations (10) using two 
different backward-time integration methods, we observe from Figs.  2 and 3 that these methods yield qualitatively different results. 
7 
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Fig. 3. Plots similar to those seen in Fig.  2, but for 𝛼 = 0.95 [first row, panels (a)–(c)] and 𝛼 = 0.9 [second row, panels (d)–(f)]. White-colored points in panels 
(a) and (d) correspond to initial conditions whose backward time evolution was not computed due to the numerical instabilities of the implemented algorithm.

In particular, one method results in broken NHIMs, while the other preserves their smoothness and continuity. These differences 
arise directly from the distinct backward integration schemes employed. This naturally raises the question: which method provides 
Lagrangian descriptors that accurately represent the phase space structure of the fractional-order dynamical system?

To address this question, we first revisit the notion of equilibrium solutions in fractional-order systems. The equilibrium points 
of systems with the Caputo derivative coincide with those of the corresponding integer-order system; see, e.g., [76] and references 
therein. The linear asymptotic stability of an equilibrium is determined by the condition | arg(𝜆)| > 𝛼𝜋∕2, where 𝜆 denotes the 
eigenvalues of the linearized system [77–79]. If this condition is not satisfied, the equilibrium is linearly unstable. Using this result, 
the equilibria (𝑥, 𝑦) = (±1, 0) of the system (10) with the Caputo derivative will become asymptotically stable for 0 < 𝛼 < 1, while 
the origin (𝑥, 𝑦) = (0, 0) remains unstable. 

On the other hand, fractional systems involving the Riemann–Liouville derivative generally do not admit standard time-
independent equilibria [76]. This is because, as seen directly from (1), the Riemann–Liouville derivative of a non-trivial constant 
does not vanish. Specifically, for 0 < 𝛼 < 1, we have

𝑅𝐿𝐷𝛼
0+1 = 𝑡−𝛼

𝛤 (1 − 𝛼)
.

Therefore, only the trivial constant solution – when it corresponds to an equilibrium in the associated integer-order system – can 
persist as an equilibrium in the Riemann–Liouville framework. Its stability is determined by the same criterion as in the Caputo 
case [80]. Consequently, the origin (𝑥, 𝑦) = (0, 0) remains a saddle point of the system (10). In contrast, the nontrivial equilibria 
(𝑥, 𝑦) = (±1, 0), which exist when 𝛼 ∈ N, no longer qualify as true equilibria for 0 < 𝛼 < 1. We refer to them as quasi-equilibria since 
the dynamics of the system tend toward these points in the limit 𝑡 → ∞, as we will show below. 

Next, we turn our attention to the Duffing oscillator with 𝛼 = 0.95, focusing on the phase portraits generated using the Riemann–
Liouville and Caputo fractional derivatives, computed with the ‘nonlocal implicit inverse’ and ‘time-reversing inverse’ methods, 
respectively, for an integration time of 𝜏 = 5 [Fig.  3(a) and (b)]. In these cases, we analyze the relationship between the phase space 
patterns obtained from the forward and backward Lagrangian descriptors (7) and the corresponding forward and backward time 
evolution of selected trajectories. The results of this comparison are presented in Fig.  4.
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Fig. 4. Initial conditions of the Duffing oscillator governed by the fractional differential Eqs. (10) with 𝛼 = 0.95, colored according to their Lagrangian descriptor 
values (using the color scale shown above each panel). The plots are generated using an equidistant grid of 100 × 100 points over the intervals 𝑥 ∈ [−1.5, 1.5]
and 𝑦 ∈ [−1, 1], with an integration time of 𝜏 = 5. The Grünwald–Letnikov derivative (4) is used for the forward-time evolution of orbits to generate panel (a), 
and its ‘nonlocal implicit inverse’ version is applied in panel (b) for the backward-time evolution of initial conditions. The results in panels (c) and (d) are 
obtained using the Caputo derivative (2) for the forward-time (panel c) and its ‘time-reversing inverse’ method for the backward-time (panel d) integrations. We 
superimpose the forward [panels (a) and (c)] and backward [panels (b) and (d)] time evolution of three representative orbits, shown as cyan curves, with initial 
conditions (𝑥0 , 𝑦0) = (−0.351, 0.116), (𝑥0 , 𝑦0) = (0.525, 0.343), and (𝑥0 , 𝑦0) = (0.186,−0.599), indicated by cyan points, using the respective integration methods.

The results in Fig.  4(a) and (c) are obtained using the forward Lagrangian descriptors method (7), applied to the Grünwald–
Letnikov (4) and Caputo (2) derivatives, respectively. In contrast, Fig.  4(b) and (d) show the results of the backward Lagrangian 
descriptors method (7), computed using the ‘nonlocal implicit inverse’ and ‘time-reversing inverse’ approaches, respectively. In each 
panel, three cyan points indicate the initial conditions (𝑥0, 𝑦0) = (−0.351, 0.116), (𝑥0, 𝑦0) = (0.525, 0.343), and (𝑥0, 𝑦0) = (0.186,−0.599). 
Cyan curves corresponding to each initial condition are superimposed on the scalar fields and represent the time evolution of the 
respective orbits.

The orbits evolved forward in time [shown in Fig.  4(a) and (c) for both types of fractional derivatives] are attracted to the stable 
fixed points (𝑥, 𝑦) = (±1, 0). Examining their backward-in-time evolution in Fig.  4(b), we observe consistent behavior: the trajectories 
now move away from the fixed points (𝑥, 𝑦) = (±1, 0), as expected. In particular, some trajectories tend to approach the saddle point 
at (𝑥, 𝑦) = (0, 0) before being repelled along the unstable manifold associated with the origin. Across all three panels [Fig.  4(a), (b), 
and (c)], the trajectories appear to be guided by the geometric structures revealed by the Lagrangian descriptors method.

On the other hand, we observe inconsistencies in the orbital behavior shown in Fig.  4(d). Since the fixed points (𝑥, 𝑦) = (±1, 0) are 
stable in the forward-time evolution [see Fig.  4(c)], they must act as repelling points in the backward-time integration. However, in 
Fig.  4(d), the cyan trajectories are also attracted to these fixed points, contradicting the expected behavior. This inconsistency 
indicates that the ‘time-reversing inverse’ method (11) is valid only for integer values of 𝛼. We, therefore, conclude that the 
‘nonlocal implicit inverse’ method is the appropriate approach for backward-time integration in fractional-order systems, as it yields 
Lagrangian descriptors that accurately reflect the phase space structures of such systems.

Furthermore, this analysis explains the breaking of the infinity-shaped NHIMs observed in the first columns of Figs.  2 and 3, 
compared to the coherent structures seen in Fig.  1 for 𝛼 = 1. In the classical Duffing system with 𝛼 = 1, the phase space contains 
families of periodic orbits around the fixed points (𝑥, 𝑦) = (±1, 0), enclosed by the connected stable and unstable manifolds forming 
the characteristic infinity-shaped structure. When fractional derivatives are introduced, the system loses the closed-loop nature of 
these trajectories, and for 0 < 𝛼 < 1, the dynamics evolve toward stable, spiral-like behavior. As a result, the structures associated 
with the stable and unstable manifolds become disconnected.

5. Conclusions

In this work, we studied the behavior of a dynamical system governed by fractional-order differential equations, specifically 
the unforced and undamped Duffing oscillator (10), by applying the method of Lagrangian descriptors. To our knowledge, this is 
the first time such a method has been applied to these systems. Using different definitions of fractional derivatives and approaches 
for backward-in-time integration of orbits, we demonstrated that the Lagrangian descriptors method can successfully reveal the 
underlying geometric features that govern the system’s phase space transport. We also investigated how the order 𝛼 of the fractional 
derivatives and the integration time 𝜏 influence the morphology of the resulting phase space structures.

Our findings showed that for values of 𝛼 close to the classical, integer-order Duffing oscillator (𝛼 = 1), the phase space structures 
are similar to those of the classical system. However, we observed significant changes in the phase space structure as 𝛼 decreases 
below one and 𝜏 increases. Additionally, we identified that the ‘nonlocal implicit inverse’ approach is the correct method for 
performing backward integration of fractional-order differential equations. However, it presented computational challenges for 
smaller values of 𝛼. Addressing the computational efficiency and accuracy of backward-in-time integration for fractional-order 
systems remains an important task, which we aim to tackle in the future, possibly by considering right-handed fractional derivatives 
as the inverse of the corresponding left-handed ones [14,81,82].
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Our results highlight the effectiveness of the Lagrangian descriptors method in providing a qualitative geometric interpretation 
of the dynamics of systems governed by fractional-order differential equations. This method enables the exploration of phase space 
regions associated with distinct dynamical behaviors. We hope that this work will serve as a foundation for further applications of 
Lagrangian descriptors to fractional-order systems. As a natural continuation, we will report our investigation of the fractional-order 
Duffing oscillator with 1 < 𝛼 < 2 in a future publication.
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